Privacy Policy

Terms & Conditions

See Details This website uses cookies. By using this website you are accepting the use of cookies. For more information please view the privacy policy.
Can you draw a line through all of the edges in this picture?
Each side is broken into 2 or 3 edges, and there are also 7 edges inside that you have to cross. The line must be continuous, and cross each edge exactly once.
[Puzzle Code = ZKPQ]
Direct Link: www.brainbashers.com?ZKPQ
Hint: Try this with a piece of paper.
Answer:
There is no possible way to complete the line, there will always be one edge left  or you have to cross an edge twice.
This puzzle is the same as the famous 'Seven Bridges of Konigsberg' problem first solved by Euler.
In that problem, the task was to find a closed path that crossed each of the seven bridges of Konigsberg (now Kaliningrad, Russia) exactly once.
Puzzle 2
How many squares, of any size, can you find on this chess board which do not contain a Rook?
There are 60 squares of size 1x1. There are 35 squares of size 2x2. There are 12 squares of size 3x3. There are 3 squares of size 4x4.
A total of 60 + 35 + 12 + 3 = 110.
Puzzle 3
Starting in the bottom left corner and moving either up or right, one square at a time, adding up the numbers along the way, what is the largest sum which can be made once you have reached the top right corner?
Hint: Perhaps looking around the shapes will help.
Answer: C.
The shapes are the spaces between the digits in the numbers 27, 28, 29 and 30, therefore C is the correct answer, as it is the space between the digits in the number 31.
BrainBashers™ is a trademark. This website uses cookies. By using this website you are accepting the use of cookies. For more information please view the privacy policy. By using this website you are also agreeing to the terms and conditions.